9 Release/Package
Management

This chapter describes how files can be packaged to create a product release. You will learn how
SpectrumSCM ensures the integrity of a release, its automatic CR dependency checks, and how to
select CRs to create a release. Under SpectrumSCM version 2.6 the Package/Component
Management feature has been introduced which allows product extract/builds to be assembled
from multiple release/project components.

9.1 What is a Release?

A release is a set of files, each at a particular version, that when extracted from the system, make up
a single version of the product. Managing release formation can be a tedious, time-consuming job
on some CM systems. In order to create a release with separate versions of individual files, a CM
system needs to be able to propetly track the file changes that make up the individual file versions
and present that information to the user in some meaningful form. In the SpectrumSCM system,
this is easily accomplished with the built-in issue tracking system.

Specialized file changes, like small branches in the code, cannot be lost in the system because each
change is officially recorded in the issue tracking system. Each release is a collection of active CRs in
the system. Releases build on top of previous releases to simplify the entire release management job.
As each CR is completed and the releases are created, the number of outstanding CRs that must be
accounted for is reduced to the number of open CRs since the last release was created. This keeps
the number of CRs for any given release down to a manageable few.

A release (a specific version of the product) can therefore be easily re-created at any time simply by
extracting the relevant versions of the necessary files using the appropriate CRs. Outside of tracking
changes to files, creating releases is the single most important job that a CM system must perform.
The SpectrumSCM™ system is designed from the ground up with the necessary features that
make release management a simple task.

9.2 Releases and their Relationship to Generics

Releases are defined within a generic and a generic can contain a sequence of releases. The first
release in a new generic is based on the last release in the predecessor generic. This is done in the
SpectrumSCM system as a space saving measure and it keeps in line with the overall practice of
basing one release on another.

NOTE: When a new generic is formed, the last release in the predecessor generic will become
locked, and that release will be used as a basis for subsequent releases in the descendent generic.

9-1

Chapter 9 — Release/Package Management

9.3 The Release Management Process

By design, the SpectrumSCM system imposes no rigid or predefined release management process.
The following sections define two example/possible release management process strategies. Either
strategy can be used to produce good results while maintaining the ease of use of the overall system.
The user of the system is free to use either one or a combination of the two strategies, depending
on the needs of their organization.

Strict Release Management Process

A strict release management process is one that guarantees that any previous release can be
directly extended to include new works or bug fixes. Recall that releases are built with change
requests, and that change requests are made up of particular versions of files. Recall also that
releases are based on previous releases, that is, release 2.0 is dependent on the particular versions of
files in release 1.0 and so on. Once the 2.0 release has been formed (files have been extended from
release 1.0 to form this new release), release 1.0 can be directly extended when a strict release
management process is in place. This strict release management process requires a new
generic for each release. This is also known as the Branch on Release Pattern'

Simple Release Management Process

A simple release management process is very similar to the strict process except that multiple
releases can be formed in the same generic. When multiple releases are formed in a single generic,
only the last release can be directly extended. Any one of the previous releases can be extended by
forming a new generic with the files contained in that release. When a generic is formed from a
release, the files in that generic will exactly match the versions of the files in the release.

When generics are created from releases in SpectrumSCM™, only the files that have actually
changed from the baseline will get new disk images. All other files will simply be common object
references to already existing files. This is done as a space saving feature considering that a good
number of files in any system rarely change as new features are added.

Combinations of strict and simple release management

Combining the two release management process strategies involves using the simple strategy to
produce patch releases of a product. When a new feature is being added, create a new generic (per
the strict release management process) and do the new feature work in the second generic. The
default behavior of the system is to check files out uncommon. This guarantees that the last major
release of the product in any generic is always easily extensible in case the need arises. A fix applied
to the current release (the last release of the previous generic) can be made common to the new
generic by making the fix common.

I Berczuk, Stephen P. and Appleton, Brad. Software Configuration Management Patterns. Effective Teamwork, Practical Integration.
Addison Wesley 2003. ISBN 0-201-74117-2

9-2

Chapter 9 — Release/Package Management

9.4 Creating a Release

To create a release,
1) Select Release Management from the Administration menu on the Main Screen.

A, Spectum M - som Connected e oo e S
File Edit Extract Check-In Workspace ChangeRequest Reports

|x =) m| E CR Attribute Memt..

CR Life-cycle Admun.., —

Projects: Application_A gl Gen CR Life-cycle & Wosk flow Admin... ‘v | Local Raoi
@ Application A 2 E Create Project Wizard... :] Slan

= @ Mailine (Create Project..
@ Build_Seripts Rename Project...

|| : F@ DCesign (: .for the MNetw

[.-‘--@ Toce (Create Generic.. rfeature fort

g-_-,..@ petf meter 25 (Modify Generic... sleasing to prt

Wiew Generics..

L L‘---tﬁl Requrements

:’@ SIC User Admmn. .

=[5 dbaceess User Category Admin ..
[B BinlChjava [2.2] 3 ; Project User Adrmin . I
D Contextjava [3.0] Edit Access Control Admin... | Info | CR. Se
% f:;iv; Ejl] CR{ Module Admin. (Edit Time
[h error.c [1.0] Release Management. .
D fmatch.e [2.1] Package/Component Management. .
[getoptic 213 L —
[B it B E‘ _fiew Celete Log... m
Y installsh [1.0) L q
Y Makefiein [1.0 Fill Reload Phugins st edited by's

This will bring up the Create Release Screen.
2) Select Create Release Name via the Action Menu on the Create Release screen.

Ik SpectrumSCM - Create Release gﬁﬁ

Action i Help

Reftresh Scteenn Cirl-F Deleteé

Create Release Matme

— ?
Proje Change Release Mame I:|

Release: !@ sema.4.1.1 |V|
Dielete Releasze

Ayd Frimt SORT ‘ Release CRs ‘
Repotts r af |
% £ mardline itst: = _:3 ? somm12 505 - Completed - File Version Historyij

e s indn s | y somi2 507 - Completed - Adjust reject messag
% soml310 - Study - Meed to Validate all impoxi'_._ L@ V somi2 512 - Completed - Update Eclipse for sei_._|
o hd T |+

[« i 0] i i e o]]

r CR Repott r CR Drependency Report r CR WES Report i/ Ilessaze Area

ook e e sk ok Nomlahz].ﬂg CR].I.St seaeaakakok ook
CR: som2320 color coded Yellow due to dependency with CR: sem24582
CRisom2342 color coded Yellow due to dependencey with CR: sem2482
CR:som2524 colot coded Yellow due to dependency with CR: sem2482
CR: scm2523 colot coded Yellow due to dependency with CR: sermi2482
CR: scm2526 colot coded Yellow due to dependency with CR: sem2523

Chapter 9 — Release/Package Management

3) This will bring up the Input window where you Bnput x|

enter the new release name. Click OK.
This will take you back to the Create Release screen.
Notice that the release name is populated.

Hew release name:

[Genesis_Release_1.0] |

| OK || Cancel |

9.4.1 Select the CRs to be included in the release

@ SpectrumSCH - Create Release

File Action Help
x Cloze B Mew @ % Drelete
Project: scm Generic: | hlainline Release: % (Zenesis_HRelease 1.0
Available CTRs SORT Eelease CRs
Dhoe 500000002 - Study - Add new atteibute hand * =~
? sem000003 - Systern_testing - Drewvelop a new
9 som000004 - Drewelop - Develop a new applis
ﬁ schSIISIISIEIEIS - f}pste:_’ﬂ_tesﬁng -]:Ijevelufp anen
< > “

CR Report| CR Dependency Report| CRWES Report| Message Area
Miessage area

e o e o o NDﬂnﬂ]ﬂlﬂg CR]J.St e o o o o e

e e e e e ook NDﬂnﬂl‘iZZ.ﬁDﬂ CDmP].EtE skl ok kokok

Available CRs — This area displays the CRs that are in this generic. Note that CRs are flagged and
the flags can be green, red, or yellow.

Green — the CR’s development life cycle is complete (but possibly pending testing, approval
and deployment type phases). You can include this CR and its associated files in the release.

? Yellow - the CR has completed development; it is dependent on other CRs that have not yet
been completed.

9 Red — the CR is not complete.

Any CR with a red “X” to the right of the flag icon indicates that the CR has no file level changes
associated with it.

Chapter 9 — Release/Package Management

=

Choose the CRs that you want to include in the release and use the right arrow | to move them
into the Release CRs area. If you make a mistake, you can use the left arrow to remove a CR from
the release.

Only green CRs may be selected for inclusion in a release. If a CR that you wish to include in the

release shows up as red (y), it is not finished “development” i.e. it is not past the final source
modification phase defined in the project’s life-cycle. If this CR is wanted to be included in this
release then the current assignee will need to finish their work and progress the CR or you (or
someone else with assighment privileges) will need to use the Assign/Modify screen to move the
CR past the final source modification phase. Requiring CR’s to be past the final source modification
phase guarantees the stability and integrity of the release build process because those CRs cannot be
edited.

Note, it is perfectly valid for development to continue on CRs not needed by this release. These
CRs can even edit files to be released in this release since they will be newer file versions and not
dependent file versions.

If the CR is flagged in yellow (W), it has one or more dependencies. Double-click the CR to show
the dependency detail or right-click and run the specific CR Report or Dependency report. A
yellow CR means that this CR has completed development, but it is dependant on other CRs that
have not yet finished.

9.4.2 Dependency Checking
Dependencies are created when multiple CRs have made changes to the same file(s) or when CRs
are involved in a work breakdown structure.

As you select CRs for the release, file level dependency checking is being performed. Only green
(finished development) CRs and their dependants can be assigned. When a CR is placed into a
release, any CRs that the original CR depends on will automatically be placed in the release, too.
This action can be seen by opening up the message tab on the bottom of the release management
screen.

4l SpectrumSCM - Create Release (=) !_I;_IJ

File Action Help.
x Close ij e 3@ Delete

Project: Geneziz Seneric: .;b’\airrlin_s _V_ Beleaze: -ﬁ.ﬁelrsr';is_ﬁelgoge__l.u _":'

| Available CRs [LsorT] 1 Release CRs

(W Genesis000001 - Lood initial sources Il @ Gy GenesisDON0 - Maw high level featirs, L

(R Benexiz00000Z - Setup project Benesis in S5CH ; G Genesis00005 - Trplemertation of feature 1
D f Benesisl00006 - Implemantation of feature 2
Py

bl ¥|

CR Beport | £ Dependercy Report | CR WBS Report Meszoge Area |
Message areaZ004/06/23 16:06:38: Analyzing dependercics for CR Genesiz000004

Adding CR 4 to the releass

Adding CR 6 to the release

Adding CR & to the release
200406423 16:06:38: Analyzing dependencies for CR Cenesiz000006
Z004/06/23 16:06:38 Analyzing dependencies for CR Genesiz000008

9-5

Chapter 9 — Release/Package Management

The above example shows that when CR Genesis000004 was added to the release that CRs 5 and 6
were automatically added to the release. This is the result of a parent/child relationship forming a
dependency at the CR level. The same action will take place when CRs with file level dependencies
are added to a release.

Requiring dependents to be added to the release guarantees the integrity of the build because
nothing is being missed out. L.E. Feature A is dependent on Feature B but only Feature A gets
placed into the release, this either breaks the build (or worse, the product at run time) because that
dependency is unresolved — SpectrumSCM does not allow this situation to occut.

Once the set of incomplete CRs and dependant CRs have been identified, the developers
responsible for completing these work items can be alerted and their progress monitored to ensure
that they are going to complete the tasks on time. When the dependant CRs have been completed
(past the last development phase), a refresh of the Release Management screen will show the CRs
are now in a green state and they can be moved into the release.

In this next example, we are defining Genesis_Release_1.0. We see that CR Genesis000004 is
yellow. When we right-click on GenesisO00004 and look at the WBS Report, we see that it is
involved in a parent/child relationship with CRs 5 and 6. CR Genesis000006 is still in the Develop
phase. Therefore, CR Genesis000006 has to be completed before Genesis000004 can be moved
into the release. CR GenesisO00005 may be moved into the release since it is green flagged and has
no dependencies.

ih SpectrumSCM - Create Release -.:.'...[..E_!J
File Action Help

\ o | rew FE velete

Project! Genesiz Generic! Mainlire:v_' Releaze: ﬂ&nensis_ﬁalaosc_l.ﬂ i

| Available CRs SCRT | Release CRa

ﬂ GeresisQ0 0002 - Setup project Genesis in S5] u

< Geresis 000004 - New high leved feoture. :.

:% Gere2i2000005 - Tmplementation of featune | |=
)

? Getezi2000006 - Implementation of featune 2

CR Beport | £R Dependency Rspori: CRWES Report | Message Area
' - : : 2004/06/23 16:12:45 [m]
CR Work Breakdown Stuncture Report [

Project CGenesis
CH. Mumbet - Genesis000004

Header . Mew high level feature,
Generic | Dvaintine
State Tesl =

Peer-To-Peer Relationships

The selected CF. does not have any peers

CR State Generic | Header Comment

GenesisB00006 fDevelop | Bainfine | Implernentation of festure 2 |Direct child of Genesis000004

GenesisD00005 § Tes Biaindine | Implernentation of festure | (Drirect child of Genesis000004

et

9-6

Chapter 9 — Release/Package Management

9.4.3 Extract Files to Build the Release

Once a release has been defined, an Extract Files by Release can be performed (using the Main
Screen Extract / Extract Files by Release menu option or cmmand-line routine scm_gtr) to
extract the necessary files that can be used to build the release. The file versions associated with the
CRs included in the release will be extracted to the Local Root Directory.

Lok

{4zl SpectrumSCM - sundar - Connected to scmdev: 1099

File Edit | Extract | Check-In Wotkspace ChangeRequest Administration Reports Help
R I Exttact Files M Extract Fi:les by Directory.. @ . @
- —| Check-Outtodisk #f ExtractFlleshyCR. —— i :
Projects:!_sE Check-Out to desktop » Extract Files by Interirn Release.. Local Root Directory:;C:\ScreenHelp |r |!_!
o @ http - Extract Files by Relezlse... : SEE— = = .
I Eﬂ — i| | Assigned CRs |CR Filters...JI DA ‘ [File List | Dresctiption rMDdules
- ag . WL/ son24ys - Nome - File Verston Hista éfiMOdulES ||

NOTE: Do not extract files for building a release into the same local root directory used for
development since this would potentially overwrite (or at least warn about) any on-going
development files. Set up a different directory (remember, you can have multiple local root
directories). The Extract Files window allows you to verify or choose the generic and release to
extract.

J2 Extract Files to C:\scm

[w] Create BOM

[w] Include Base

l Extract files I ‘ Cancel !

Click Extract Files. All files associated with the CRs included in the release will be extracted to the
Local Root Directory specified. If the Create BOM and Include Base options are selected, a Bill
of Materials for the release along with the files in the Base will be created under the local root
directory. The BOM file uses a SSCM_REI., BOM_Date_Timestamp format for the file name. The
results of the extract process are displayed.

1oy

Successiully exracted:
Successiully extracted:
Successiully extracted:
Successiully exracted:
Successiully extracted:
Successiully extracted:
Successiully exracted:
Successfully exractad:
= Extract of release completes successfully (8 files) =

ciGZenesis_Release_1.0MsroFeature_set 11FLI
ciGenesis_Release_1.0srofeature_set NCLA
cAGenesis_Release_1.0wsroiFeature_set 1WEC
ciGZenesis_Release_1.0MsroFeature_set 1\WE
ciGenesis_Release_1.00srcFeature_set 1WME
cAGenesis_Release_1.0wsroiFeature_set 1WFO
ciGZenesis_Release_1.0MsroFeature_set 11FLI
ciGenesis_Release_1.0MsroiFeature_set 1L

Chapter 9 — Release/Package Management

9.5 Building the Release

SpectrumSCM gives users the flexibility to use their native environment and desired products to do
their builds. Extract the files associated with a release to the local directory from which you would
normally run your build. After extracting the files, use them as input into the desired build process
to compile the release.

9.6 Adding CRs to a Release

Once a release has been created, CRs can be added via the Create Release screen. New files can be
added to existing CRs. New CRs can be created and added to the release.

To add, a new feature or bug fix to an existing release, simply add the CR for that feature or bug fix
to the Release CR list. When CRs or files are added, changed or removed from a release, you must
extract the code and rebuild the release for the new code to be included.

NOTE: CRs cannot be added to or removed from a release that has been locked. Release 1.0 will
be locked when Release 1.1 is created. Creating a new generic locks the last release in the previous
generic.

9.7 Removing CRs from a Release

CRs can be removed from a release via the Create Release screen. Use the left arrow to remove a
CR from the release. When CRs or files are added, changed or removed from a release, you must
extract the code and rebuild the release for the new code to be included.

NOTE: CRs cannot be added to or removed from a release that has been locked. Release 1.0 will
be locked when Release 1.1 is created. Creating a new generic locks the last release in the previous
generic.

9.8 Re-creating a Past Release

Any release defined in SpectrumSCM can be re-created by following the same steps used for
extracting files in a new release. Use the Main Screen Extract / Extract Files by Release menu
option to pull up the Create Release screen. Set up a local root directory specifically for the
release so that files belonging to other releases are not corrupted (remember, you can have multiple
local root directories). Choose the generic and release to extract using the pull down boxes for
generic and release and click Extract Files. All files associated with the CRs included in the selected
release will be extracted to the specified Local Root Directory.

The results of the extract process are displayed. The contents of the specified local root directory
can then be used as input into the build process to recreate the release.

9-8

Chapter 9 — Release/Package Management

9.9 Interim Releases

You use Interim Releases to extract a set of files based on the phase of your life-cycle but before
they are placed into a formal release. So for example, if you have an “Integration Test” life-cycle
phase as part of your process, but developers can still modify files under these CRs until things
stabilize and become ready for the formal release.

Since this is an informal process, you also have various options to override the dependency
checking if needed. Specifically you can turn-off dependency checking altogether (via the checkbox
at the top of the screen) or via a right mouse click context menu, include or exclude specific CRs as
necessary. Note that by including CR’s with dependency issues you might get undesirable end-
results. Changes from the dependant edits could affect compilation or execution of the end product.
Select the phase in your life-cycle for which you wish to create this IR and then press the “Collect
CRs” button. The qualified and rejected CRs will be displayed in the right and left panels
respectively.

1. SpectrumSCM - Create Interim Release Q@
File Action Help

x Close CE Heport @ CR Dependency Report
-Collect and Extract Controls-

Collect CRs | <==> Phase: {Requirements V-Ir Lependency Checking
e Create BOWM] Creltas Oinly Iniclude Base

rBejected Cha- - [rGhaalified CHs-
CR State Header 1 ll[er State Header
f [BEEROODODZ Drevelop CR2
[BEBROOOOOS Lrevelop CREATOR
|| BERODODOO4 Study hake Cormunon

_ .CR Report| .CR Drependency Repuﬁi Catput

EChangE Fequest collector running. . *"\‘r'
Located CR: EERO0OOOZ [l
Located CHR: EERO0OOOS
Located CHE: EEROOOOO4

Ainalyring Change Requests. el

The “Create BOM” checkbox will create a Bill of Materials report as part of the extraction. This
lists all the files and their version numbers that make up this extraction. Additionally, by selecting
the “Deltas Only” checkbox, if you are performing a series of extractions and builds, only those

9-9

Chapter 9 — Release/Package Management

files that have changed since the previous extraction will now be pulled. This could be a significant
performance improvement, depending on your process.

The interim release command line command can also be used to automate nightly-build or
continuous development environments. Either nightly or as soon as a CR is progressed from the
development phase the scm_gir command could be triggered to extract and build the target
environment.

9.10 Package/Component Management

The Package/Component management feature allows the product manager to organize the
SpectrumSCM controlled assets in a flexible manner within the overall repository. For example if your
product consists of 3 separate components (it could consist of many more), a database component, a web
servlet/ ASP component and a main heavy-weight user intetface component. These 3 components could
be controlled within SpectrumSCM as separate folders, generics or even projects. Depending on the
dependencies within these components or their independence, how to store them might vary from one
organization to another.

Release Management (as desctibed above) allows the Generic Engineer/Release Manager to define
release sets based on Change Requests within a particular project and generic. If you want to organize
your components above this level then package management can be used to bring the overall product
together in an appropriate manner.

@ Package/Component Manager E@E|

File Action Help

x Cloze]’-3 Mew Pe Hename % Drelete Package Dietail Report A]l Packages Report

Package: |Products »

Project eneric Component Type DrirjRelease /FPhase | Extract To
Components Dratabase directory srohsomb dbaccess db
Components Dratabase directory stohsom persistent dhb
Components Middlewrare directory stohsombimplementa... [middle
Components Middlewrare directory stohsombinterfaces rniddle
Components Middlewrare ditectory stohsomb transpott rniddle
Components Presentation directory stohsombpresentation [l

&

I-ERE S

Once a package has been defined it can be extracted in a reproducible manner via the “Extract -> Extract
Files -> Extract Files by Package” menu option or the scm_gpack command-line.

9-10

Chapter 9 — Release/Package Management

A Package can be defined by hitting the “New”” button or the “File -> Create Package” menu item. This
defines an empty package to which you can “Add” the appropriate components (or Action menu -> Add
Package Item). This will present the Package Definition window as shown below.

Existing packages can be updated or even removed, however all such actions will be logged (in the server

logs directory) for auditability purposes.

A package item or component can be any release, directory or even an interim release (for testing builds).
Select the appropriate project and generic, and then the appropriate radio button (on the left-hand side)
to indicate which type of component this package item is to be selected from.

Add Package ltem El
Package Item Definition

Project: Components v

Generic: Dratahase i

YWhat to extract:
& Repository Directory, Interim Release Fhaze, o Formal Release

(%) Directory: E

(IR Phase:

() Release:

WWhete to extract to:
‘The relatiwe location for this component within the overall packaze

Exmact to:

[ok || cancel

For a release or interim-release, the selection is a simple choice-box. Select the appropriate release or IR
phase in these cases. For a directory component, the directory path can either be typed in, or the “...”
button can be used to browse for the desired repository folder(s). If more than one directory folder is
selected, each will be represented as their own component in the overall package definition (for example
the 2 database folders or 3 middleware folders shown above).

Once a package is defined it can be extracted through the Extract menu. In performing a package extract
a “target extract directory” is specified. This defaults to the current local root directory but can be
changed. When performing an extract each component is extracted to the target extract directory PLUS
the “Extract to” location (if any is specified). Thus if the target extract directory is specified as below,
then the database components in the example above will be extracted to the
C:\tmp\componentsPackage\db folder.

9-11

Chapter 9 — Release/Package Management

The “Extract to” location for a particular package component is the relative directory into which it
should be extracted.

M - séi-- Connecte

y y - — - i

File Edit Extract Check-In Wotkspace ChangeRequest Administration Repotts Help
XPEE e @2l ad &

Frojects: Components b Geneﬁcs:;Databzse * | Local Root Directary: C:

'@ Coraponents

—@ Database <- {(Shated <baseline=)
-‘l‘% bin
+.@ S1C

= Extract Files Ladfption | Modules|

f.ersion- Create,l"...-

9 "
“:f) Package to be extracted: Froduct &

Tatget Extract Directory: | Ciitmp' componentsPackage E]

Create BOW

[Extract files l I Caneel

When extracting a package a Bill of Materials report will be produced (unless the “Create BOM” option is
un-checked) just like the other extraction methods (telease and/or IR). The BOM includes a textual
report (file list) with the name “SSCM_PKG_FL,_date_timre.txt” and the full HTML report with the name
“SSCM_PKG_BOM_date_timehtml]”. The BOM reports detail all the files extracted and their specific
version numbers and locations.

The BOM is also available on-demand directly from the package management screen “Package Detail
Report” button. The “All Packages Report” produces a summary report of all the packages and their
components as they are currently defined.

Package Management is aligned with Release Management and the Generic Engineer role from the
perspective of permissions. Therefore only users with “Create New Generic” permissions will be able to
access the Package Management screen. The user will then only be able to access the projects to which
they have the “Create New Generic” permissions in that project. Administrators and system-level Project
Engineers have this permissions level for all projects.

9-12

